9.2 Combining Two Functions: Sums and Differences

A Definitions
The sum and difference of two functions are defined by

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x) \\
& (f-g)(x)=f(x)-g(x)
\end{aligned}
$$

Ex 1. Let $f(x)=x^{2}-1$ and $g(x)=1+\sqrt{x+1}$. Find
a) $(f+g)(0)$
b) $(f-g)(3)$
C) $(f+g)(-2)$
d) $(f+g)(x)$

Ex 2. For each case, find the domain of the sum of the given functions.
The domain of the sum or difference of two functions is the intersection of their domains.

$$
D_{f \pm g}=D_{f} \cap D_{g}
$$

b) $f(x)=\sqrt{2-x} \quad ; \quad g(x)=\log (x+1)$
c) $\quad f(x)=2^{x-2} \quad ; \quad g(x)=x^{3}+1$
d) $f(x)=\sqrt{4-x^{2}} ; \quad g(x)=\frac{1}{x-1} ; h(x)=\log x$

C Point by Point Evaluate $f \pm g$ at every possible number x.	Ex 3. Given $\begin{aligned} & f=\{(1,0),(0,-1),(-1,2)\} \\ & g=\{(0,1),(2,-1),(1,3)\} \end{aligned}$ Find $f+g$.	
Ex 4. The functions f and g are given by their graphs on the right figure. Graph the function $f-g$.		

Ex 5. Complete the following table. Justify your reasoning.

	$f+g$	even	odd
	even		
g	odd		

Ex 6. For each case, justify your answer.
a) Is the sum of two polynomial functions a polynomial function?
b) Is the difference of two rational functions a rational function?
c) Is the sum of two sine functions a sine function?
d) Is the sum of two periodic functions a periodic function?

Ex 7. Write the following functions as a sum or a difference of two other functions.
a) $f(x)=\frac{1}{x^{2}-9}$

Ex 8. Is the sum of two increasing functions, increasing, decreasing or neither? Give examples to justify your answer.
b) $f(x)=\log \frac{x}{x+1}$
C) $f(x)=\sin (x-\pi / 4)$

Ex 9. If $Z_{f}=\{1,2,3\}$ is the set of all zeros of the function f and $Z_{g}=\{0,1,2\}$ is the set of all zeros of the function g, what could you say about the set of all zeros of the function $f+g$? Explain your reasoning.

Ex 10. Let $f(x)=\sin x$ and $g(x)=\cos x$. Write $f+g$ and $f-g$ as:
a) a single sine function
b) a single cosine function

Ex 11. The rational function $y=f(x)$ has a horizontal asymptote $y=5$ and the rational function $y=g(x)$ has a horizontal asymptote $y=-3$. What could you say about the horizontal asymptote of the functions:
a) $f+g$
b) $f-g$

