9.2 Combining Two Functions: Sums and Differences

A Definitions	Ex 1. Let $f(x) = x^2 - 1$ and $g(x) = 1 + \sqrt{x+1}$. Find
The sum and difference of two functions are defined by (f+g)(x) = f(x) + g(x) $(f-g)(x) = f(x) - g(x)$	a) $(f+g)(0)$
	b) $(f-g)(3)$
	c) $(f+g)(-2)$
	d) $(f+g)(x)$
B Domain of Sum and Difference of Two Functions	Ex 2. For each case, find the domain of the sum of the given functions.
The domain of the sum or difference of two functions is the intersection of their domains.	a) $f(x) = x$; $g(x) = 1/x^2$
$D_{f\pm g} = D_f \cap D_g$	b) $f(x) = \sqrt{2-x}$; $g(x) = \log(x+1)$
	c) $f(x) = 2^{x-2}$; $g(x) = x^3 + 1$
	d) $f(x) = \sqrt{4 - x^2}$; $g(x) = \frac{1}{x - 1}$; $h(x) = \log x$

C Point b	oy Point				Ex 3. Given
Evaluate	$f\pm g$ at eve	əry possible	number x	¢.	$f = \{(1,0), (0,-1), (-1,2)\}$ $g = \{(0,1), (2,-1), (1,3)\}$ Find $f + g$.
Ex 4. The functions f and g are given by their graphs on the right figure. Graph the function $f - g$.					$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ex 5. Complete the following table. Justify your reasoning.			e. Justify y	/our	Ex 6. For each case, justify your answer.a) Is the sum of two polynomial functions a polynomial function?
g	f + g even odd	even	odd		b) Is the difference of two rational functions a rational function?c) Is the sum of two sine functions a sine
]	d) Is the sum of two periodic functions a periodic function?

Ex 7. Write the following functions as a sum or a difference of two other functions. a) $f(x) = \frac{1}{x^2 - 9}$	b) $f(x) = \log \frac{x}{x+1}$ c) $f(x) = \sin(x - \pi/4)$
Ex 8. Is the sum of two increasing functions, increasing, decreasing or neither? Give examples to justify your answer.	Ex 9. If $Z_f = \{1,2,3\}$ is the set of all zeros of the function f and $Z_g = \{0,1,2\}$ is the set of all zeros of the function g , what could you say about the set of all zeros of the function $f + g$? Explain your reasoning.
Ex 10. Let $f(x) = \sin x$ and $g(x) = \cos x$. Write $f + g$ and $f - g$ as: a) a single sine function	Ex 11. The rational function $y = f(x)$ has a horizontal asymptote $y = 5$ and the rational function $y = g(x)$ has a horizontal asymptote $y = -3$. What could you say about the horizontal asymptote of the functions: a) $f + g$
b) a single cosine function	b) <i>f</i> – <i>g</i>

Reading: Nelson Textbook, Pages 521-528 Homework: Nelson Textbook, Page 528 #3, 4, 5, 7, 10, 13, 16